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STARBME Usage 

After install STARBME, below main menu will show after activating the icon of 

STARBME. 

 

Figure 1 Main menu of STARBME 

 

1. Set CRS(Coordinate Reference System) 

Before specifying the data, the CRS (Coordinate Reference System) must be set to 

arrange your spatial relationship correctly. Here are some CRS settings for commonly 

use: 

I. In Taiwan, the TWD97-TM2 reference system is the most commonly used CRS, 

and this CRS has a world-wide EPSG code: 3826. But this CRS is not included in 

QGIS1.X, so if you want to set your data with this CRS on QGIS 1.X, you may 

custom a new CRS with the following texts: 

+proj=tmerc +lat_0=0 +lon_0=121 +k=0.9999 +x_0=250000 +y_0=0 

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 

II. If the spatial information of your data is just longitude and latitude, a popular CRS 

you may consider: the WGS84 reference system. It also has its own EPSG code, 

which is 4326. 

 

2. Specify data 

Your first step is to specify to STAR-BME the data that you want to work with.  The 

input data can be categorized into two kinds: 

 Hard data:  These are sampled or observed values on different sites and at 

different time instances if you are processing space-time data. 

 Soft data:  These are uncertain observations for which you can quantify their 

uncertainty.  These are also sampled or observed values on different points and at 



different time instances if you are processing space-time data. 

There is more information about definitions of hard data and soft data in our references 

(Yu, et al., 2009; Yu and Wang, 2010). 

Acceptable file types for your input data include the .csv and .shp file types.  To run 

STAR-BME analytical tasks, you must specify at least one kind of data (that is, only 

hard data, only soft data, or both hard and soft data). 

 

Start by specifying a coordinate reference system (CRS) by clicking the ‘Choose’ 

button next to the ‘Set Your Data CRS’ text area (Figure 1) of the main STAR-BME 

menu.  This is a necessary step to specify the same CRS for your data and your map 

canvas. 

 

Specify each kind of available data:  First click on the ‘Select’ button next to the 

‘Specify Data for STAR-BME’ text area (Figure 1) of the main STAR-BME menu.  

Then, work under the appropriate tab for hard or soft data in the new pop-up window 

(Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inside the both data type selection tabs, you need to select data source. In the drop 

down menu, we have three choices, and after the drop down menu choosing, the ‘Select’ 

button would popup different actions. If the ‘File’ option was chosen, we suppose that 

the data source comes from text file (.txt) or comma-separated values (.csv). After 

clicking the ‘Select’ button, the ‘Load File Dialog’ window would ask to fill the file 

name first, delimiters and the start row number. If the ‘Layer’ option was chosen, the 

data source would be supposed from layers which QGIS preloaded. Therefore, the data 
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Figure 2.1 



source must be selected from the drop down list of layers. If the ‘Shape File’ option was 

chosen, there would be a file-loading window to load shape files (.shp) by clicking 

‘Select’ button. 

 

When you specify a hard data file, each observation record should be written in a 

different line or row of the input file.  Each record contains the x-coordinate (‘X’), y-

coordinate (‘Y’), time instance (‘T’, if time axis is necessary), and the value of the 

corresponding observation (‘Z’).  In any single file, the values of each one of those 

arguments must be consistently registered in the same column.  Then, specify the 

column where each one of the ‘X’, ‘Y’, ‘T’, and ‘Z’ arguments is placed in the input 

file, as shown in Figure 2.1.a.  Any two rows of input data must have different sets of 

x-coordinates, y-coordinates and time instances (if time axis is necessary). 

 

In a similar manner, when you specify a soft data file, each observation record 

should be written in a different line or row of the input file.  Each record must contain 

the x-coordinate (‘X’), y-coordinate (‘Y’), and time instance (‘T’, if time axis is 

necessary) of the corresponding observation.  In any single file, the values of each one 

of those arguments must be consistently registered in the same column.  Then, specify 

the column where each one of the ‘X’, ‘Y’, and ‘T’ arguments is placed in the input file, 

as shown in Figure 42.1.b.  Any two rows of input data must have different sets of x-

coordinates, y-coordinates and time instances (if time axis is necessary). 

Note:  For spatial-only studies, you must set the ‘T’ argument to ‘None’. 

 

Unlike hard data where you specify a true observed value, for soft data you must 

specify uncertainty about your observations in the form of probability density functions 

(PDFs).  The present version of STAR-BME supports specification of two theoretical 

distributions, ‘Gaussian’ and ‘Uniform’. 

o If your soft data are normally distributed, select the ‘Gaussian’ soft data type, and 

specify the columns for the ‘Mean’ and the ‘Variance’ values in your input file. 

o If your soft data follow uniform distribution (for example, if they range within an 

interval), then select the ‘Uniform’ soft data type, and specify the columns for the 

‘Lower bound’ and the ‘Upper bound’ values in your input file. 

Once you finish specifying your data, click the ‘Create’ button in the ‘Specify 

Data’ window.  This action creates a temporary .bme object that STAR-BME uses in 

the data analysis (Figure 2.2). 

 

 

 

 

Figure 2.2 



After specifying your input data and create the .bme object, your data are displayed 

on the QGIS main window as vector layers.  You can use any QGIS tool to explore 

your data.  If you have a background layer that you want to use when mapping your 

data, you can join it (if it is a shapefile (.shp)) by clicking the ‘Add Background 

Shapefile’ button in the main STAR-BME window. The background will be show in the 

QGIS main window with just outline shape. This outline vector may help you figure 

out the result of estimation. 

 

3. Compute Trend and Residual From Data 

 

In general, the values of space-time attributes have a more elaborate dependence in 

space and time than being simply dependent on a given distance in space or time.  In 

geostatistical terms, this is expressed by saying that a spatiotemporal process is 

generally nonhomogeneous (spatial) and non-stationary (temporal)1.  For the actual 

task of space-time prediction in a following step, it is necessary to work with a 

homogeneous and stationary process.  To get there, we decompose the original process 

into a trend (also known as ‘mean trend’ or ‘surface trend’; it is roughly a general 

average of the process and represents long-term variations) and residuals 

(homogeneous and stationary components of the process; they represent variation 

across space and time at the study scale of interest).  This is known as the detrending 

step in the analysis.  Following the prediction step at a later point, the trend is restored 

in the predicted values, thus performing effectively spatiotemporal prediction in any 

process regardless its homogeneity and stationarity status. 

 

The current version of STAR-BME provides two methods to detrend a process, 

namely kernel smoothing and STMean estimation.  In the main STAR-BME window, 

make a selection from the drop-down menu in step 2 of data decomposition. 

o ‘Kernel Smoothing’ will show a related window pops up and prompts you to 

specify the spatial and temporal range parameters bs and bt, respectively (Figure 

2.3).  These are necessary for the kernel smoother.  Select either a ‘Gaussian’ or 

a ‘Quadratic’ kernel from the window drop-down menu. 

o ‘STMean’ will give you a convenient result without choosing any parameters. A 

spatiotemporal trend is estimated from your data by a preloaded model, so that user 

just need to specify the original data carefully, then the spatiotemporal detrend 

process will be completed automatically. 

For any of the previous two options, click the ‘Run’ button in the main STAR-BME 

                                                     

 



window to perform the trend estimation.  A message pops us to update you when this 

estimation is complete.  Alternatively, you might select the ‘No Detrend’ option in the 

step 2 menu of the main STAR-BME window.  In this case, you assume that the 

spatiotemporal process represented by your input data is already a homogeneous and 

stationary process.  This might be a valid assumption if you have prior information 

that your data exhibit no significant trends in their values across space and time. 

 

 

 

 

 

 
1 In Statistics, the terms ‘stationary’ and ‘homogeneous’ are used in different 

contexts.  Traditionally, Statistics has had a focus on spatial-only analysis.  In 

Statistics, the term ‘stationarity’ is used for what is here referred to as ‘spatial 

homogeneity’, and there is no corresponding term for the temporal dimension. 

 

4. Covariance Analysis 

 

To predict your attribute at locations and time instances where you have no observations, 

you need to explore how the attribute values are correlated in space and time.  You 

work with the detrended (or zero trend) residuals, and you perform this task in two steps:  

First, you examine sequentially all pairs of your data that are separated by a series of 

spatial and temporal distance lags.  The covariance of the pair values at these lags 

produces a series of covariance values with distance, and this is an empirical measure 

of the similarity of attribute values.  Then, you fit a suitable mathematical function to 

the empirical covariance to obtain a theoretical model that describes this behavior for 

data separated by any distance in space-time.  This function is the covariance model, 

and you need this to proceed to the prediction task.  In the following two steps you 

can see how to obtain a covariance model with STAR-BME. 

 

4.1 Empirical Covariance Estimation 

 

In the present step, STAR-BME estimates an empirical covariance from the 

relationship of pair-wise space-time points in different spatial and temporal lags.  

Intuitively, one expects that similarity among values decreases with distance and time 

form a point of origin.  Also, one is primarily interested in the behavior close to the 

point of origin; estimating the covariance accurately at smaller lags is more important 

 

Figure 2.3 



than at larger ones. 

 

To start covariance analysis, push the ‘Model Covariance’ button on the main 

window of STAR-BME.  A new window pops up titled ‘Covariance Analysis’.  Work 

first on the upper part of this window to estimate the empirical covariance from your 

detrended data (Figure 2.4).  This estimation requires a set of parameters for space and 

one set for time.  The required parameters are: 

 Distance limit: Specifies the farthest distance in space or time that STAR-BME 

should look for data pairs.  This is typically about half the longest distance within 

the area you work in.  By default, STAR-BME considers the limit to be two-thirds 

of the largest space and time distances observed among all pair-wise points in space 

and time, respectively. 

 Number of lags: Designates in how many distance brackets you wish to break down 

the distance limit.  Since one cannot practically obtain the covariance from pair-

wise points at an exact distance value, the covariance is estimated on a lag basis 

from all pairs that fall into each lag distance.  The number of lags indicates how 

many times STAR-BME estimates the empirical covariance at an equal number of 

distances from the origin.  It is recommended to design your analysis so that you 

have at least several lags.  When you have only some tens of data points, use a 

smaller amount of lags so that each distance lag has enough pair-wise points to 

estimate their covariance; in larger data sets, this issue does not exist and you can 

use larger lag numbers.  STAR-BME provides default 8 lags based on the number 

of pairs formed by your data. 

 Lag tolerance: Indicates the distance on each side of a lag limit, within which pairs 

are assumed to belong to this lag.  This can be typically equal to half of the 

distance between two consecutive lags.  STAR-BME provides initial values on 

the basis of the initial lag numbers. 

   

 

 

 

 

 

 

 

 

After you specify all of the above parameters, click on the ‘Plot Empirical 

Covariance’ button to produce plots of the empirical correlation analysis of your data 

 

Figure 2.4 



(Figure 2.5).  In spatiotemporal studies, the 2-D views display the marginal 

covariances at distances t=0 (for the spatial covariance) and s=0 (for the temporal 

covariance).  Spatiotemporal studies also offer 3-D views of the space-time 

covariance, where the horizontal axes are the spatial and temporal distances, and the 

vertical axis is the covariance value.  Requesting to plot the empirical covariance also 

saves temporarily the empirical estimates in the .bme object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the plots of Figure 2.5.a, the red and blue lines represent the marginal spatial 

(at t=0) and temporal (at s=0) covariance functions, respectively.  Figure 2.5.b 

illustrates a 3-D surface where the grid nodes are space-time locations where the 

empirical spatiotemporal covariance is estimated. 

 

4.2 Covariance Model Fitting 

 

In the present step, STAR-BME fits a theoretical model to the empirical spatiotemporal 

covariance function that was estimated in the previous step.  For this task, use the 

lower part of the ‘Covariance Analysis’ window under the title ‘Fit Covariance Model’. 

 

You can fit a model visually, or choose to perform an automated fit by means of 

one of the fitting methods provided by STAR-BME.  A visual fitting might have the 
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advantage that in some cases you can obtain a fit that feels generally better, compared 

to a strict parameter fitting process that primarily aims to satisfy a mathematical 

criterion.  In any case, the fit quality is assessed by the Akaike Information Criterion 

(AIC) which is a number based on the model parameters and expresses how well the 

theoretical covariance fits the empirical estimates; smaller AIC values indicate a more 

accurate fit. 

 

You can nest up to 3 different components in a covariance model to achieve a 

more accurate fit.  Each component is a permissible covariance model form.  In 

STAR-BME, you can choose among the following covariance forms in the form drop-

down menus:  ‘Gaussian’, ‘Exponential’, ‘Spherical’, ‘Holecos’ (for cosine hole 

effect), and ‘Nugget’ (for nugget effect).  The nugget effect is a contribution to the 

model variance, and represents smaller-scale variations or measurement inaccuracies.  

The other model forms are each characterized by the following two parameters: 

 Sill (or scale):  The variance contribution of the component to the total variance 

of the process. 

 Range: Specifies the spatial or temporal extent of the behavior described by the 

given form.     Start by selecting the number of nested models in your model from 

the drop-down ‘Nest Number’ menu. 

 

 

 

 

 

 

 

 

 

 

If you perform a visual model fit, then specify explicitly the parameters values for 

each model in the appropriate boxes, according to the fitting model representation in 

the window.  Specifically, in an N-component nested model, the sum of the component 

variances Ci, i=1,…,N must be equal to the maximum covariance variance value C 

(assumed to be the process variance).  In addition, each i-component has its own 

spatial and temporal ranges Ks,i and Kt,i, respectively (Figure 2.6). The Concept of these 

ranges can be referred in papers (Yu, et al., 2009; Yu and Wang, 2010). 

 

After you specify the model parameter values, push the ‘Fit Covariance Model’ 

 

Figure 2.6 



button in the bottom of the screen.  This action produces another pop-up window that 

shows you the model AIC value for the parameter values you specified (Figure 2.7), 

and also causes your theoretical model to display alongside the empirical covariance in 

the plots on the right hand side of the ‘Covariance Analysis’ window.  You can perform 

this process repeatedly, try different model and form combinations, and continue until 

you achieve a fit that you deem satisfactory. 

 

 

 

 

 

 

 

 

If you prefer an automated model fitting, then you can select between two different 

methods in the related drop-down menu, or use them both: 

 Bound Optimization by Quadratic Approximation (‘BOBYQA’ option; based on 

weighted least squares) 

 Particle Swarm Optimization (‘PSO’ option)  

Each option pops up different windows after clicking the ‘Auto Fit’ button.  In the 

BOBYQA method, you need to minimize the objective function. The corresponding 

PSO method window also shows the objective function, and includes another tab where 

you can set parameter values for the specific optimization method.  For either method, 

click the ‘Compute’ button to perform the fitting. Once the fitting computations are 

complete, a ‘fitting’ window will show the AIC value of covariance model from the 

selected method, and your fitted theoretical model parameters will display alongside 

the empirical covariance in the plots on the right hand side of the ‘Covariance Analysis’ 

window. If you try to use both of the methods, it is recommended that use the PSO 

method first, to find an acceptable combination of parameters; then the BOBYQA 

method would help to optimize the combination by clicking ‘Initial Guess From Last 

Fitting’ button to copy the parameters into the pop-up window. 

 

In general, exercise your good judgment and use your intuition to define the 

theoretical covariance model for your prediction.  The empirical covariance that is 

computed according to the instructions in the previous subsection is but an estimate 

itself; thus, there is little meaning in attempting to overfit the empirical estimate.  Also, 

small variations among different covariance models might have little or no effect in 

prediction.  In overview, focus on selecting a covariance model that reproduces overall 

 

Figure 2.7 



well the main characteristics of the empirical estimate. 

 

Upon completing the covariance analysis, push the ‘Ok’ button at the bottom of 

the ‘Covariance Analysis’ window.  STAR-BME confirms that it has a covariance 

model for the current analysis and takes you back to the main STAR-BME window. 

  

5.  Prediction 

 

In this final step, you will use the result from the previous steps to predict your spatial-

temporal value at those locations and time instances yet sampled. First you need to 

specify the space-time locations where you want to predict. In the step 4 of the STAR-

BME window, click the ‘Specify Locations’ button. In the ‘Prediction Locations’ 

window, click the button ‘Select Location Data Source’ and specify the file source. 

Inside the drop-down menu, there are several options for you to specify the spatial or 

temporal positions to predict:  

 The ‘File’ option allows you set the positions in text files (.txt, .csv, etc.).  

 The ‘Layer’ option let you choose the layers preloading in QGIS, either polygons 

or points.  

 The ‘Shape File’ option let you select those shape files (.shp) that haven’t been 

loaded in QGIS.  

 But when the ‘Shape File (With Time Input)’ option is selected, the shape file you 

select would be simply loaded, and you just need to set the maximum and 

minimum of Time T, and how many T’s you want to predict.  

 If the ‘Grid Input’ option is chosen, the spatial range and time intervals can be 

fully set by user, or click the ‘Set By Data Boundary’ button to get the spatial and 

temporal limits from data specified.  

In most of options mentioned above, you must specify the column where each one of 

the ‘X’, ‘Y’, and ‘T’ arguments is placed in the input as needed to indicate which input 

columns contain the x-coordinate (‘X’), y-coordinate (‘Y’), and time instance (‘T’, if 

time axis is necessary), respectively.  Eventually, push the ‘Create’ button to register 

the specified prediction locations with STAR-BME. 

 

By completing the above process and returning to the main STAR-BME window, 

you can see that the ‘Predict’ button in step 4 is activated.  Push the ‘Predict’ button to 

specify prediction settings and start the prediction task.  Upon pushing the ‘Predict’ 

button, a ‘Prediction’ pop-up window appears (Figure 2.8).  The ‘Order’ drop-down 

menu asks you to specify whether you want to assume a ‘Zero Mean’ process that 

corresponds to use detrended residuals, or a ‘Constant Mean’ process that applies when 



you skip the detrending process and assume that your data have a constant mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction at a specific location depends on the number and distance of  

 

neighboring data that are considered.  By means of the specified covariance model, 

STAR-BME looks for neighboring data that can affect the predicted value at the current 

prediction location.  The following parameters guide the prediction process to select 

the desired amount of nearest neighbors to the current prediction location, and to 

regulate consumption of computational resources in this task. 

o In the spatial and temporal range fields, specify the maximum spatial and temporal 

radii, respectively, around a prediction location within which to search for 

neighboring data.  These values need to be comparable to the range values in your 

covariance model, so that prediction locations can correlate with observed data. 

o In the ‘nhmax’ and ‘nsmax’ fields specify the maximum number of hard and soft 

data neighbors to consider, respectively.  These parameters enable you to account 

for the spatial and temporal density of your observed data.  In general, you can 

use up to a few soft data neighbors without considerable impact on the 

computational burden.  Requesting a much higher number of soft data neighbors 

in the ‘nsmax’ field might also lead to numerical issues. 

 

The spatial/temporal ratio is an important parameter in space-time studies that 

defines how the spatial and temporal dimensions are associated in the spatiotemporal 

continuum.  This parameter provides the key about the space-time geometry that 

governs your analysis.  STAR-BME provides an initial value that is based on your 

analysis general characteristics. 

     
Figure 2.8 



 

Push the ‘Begin’ button at the bottom of the ‘Prediction’ window to start the 

prediction process. 

 

5.1 Cross Validation 

The ‘Cross Validation’ button allows user to evaluate the covariance model 

parameters by using the root mean square error (RMSE). After specifying the prediction 

locations (but haven’t clicked the ‘Predict’ button), the ‘Cross Validation’ button can be 

clicked for the function.  

After clicking the button, the ‘Cross Validation Dialog’ Window will pop up, and 

the Sample Type part will be the same with what type of data used. If the used data 

includes hard data and soft data, other options for only hard data or only soft data can 

be checked.  

The number of Sample Size represents those sampled data can be estimated by 

other samples with the variance model. The sample size would not necessarily be the 

whole amount of samples, but if the size less than the amount of samples, the samples 

would be randomly picked for validation. 

The Sample Boundary Clipped can be checked if user just wants to validate some 

specific spatial or temporal interval. If checked, the maximum and minimum of X, Y 

and T must be decided. 

At the bottom of the Dialog, there are four buttons with various functions. The 

‘Run’ button will start the cross validation process and pop up a window with result, 

which are the values included root mean square error, mean, standard deviation, median, 

minimum value, maximum value. The ‘View Spatial Result’ and ‘View Temporal 

Result’ buttons will show the validated sample distributed spatially or temporally with 

their separated error. 

 

6. Output result 

In the output process, there are several options can be selected. 

 

o "Add Result to QGIS (Vector)" - Add result in vector data to QGIS layer. 

o "Add Result to QGIS (Raster)" - Add result in raster data to QGIS layer.  

o "Add Result to QGIS (Raster with Mask)" - Add result in raster data with Mask 

to QGIS layer. 

o "Export Result to File" - Export result as delimited text files (.txt) or comma 

separated values text files (.csv). 

o "Export Result to PNG" – Batching export result as images in PNG type (.png). 

The exportation would call the Layout Composer (An function of QGIS) and 



user must arrange the layout of those images. For more detailed information of 

the Composer, you can check the page: 

http://docs.qgis.org/2.0/en/docs/user_manual/print_composer/print_composer.ht

ml 

 

 

http://docs.qgis.org/2.0/en/docs/user_manual/print_composer/print_composer.html
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